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Differential equation method for Feynman integral evaluation is a modern method for Feynman

integral evaluation. The first advantage is that for numeric computation, it provides results for a

list of different kinematic points.

Another advantage for the differential equation method is that the with Johannes Henn’s mile-

stone UT deferential equation [1], it is often possible to get analytic results for complicated loop

integrals. Now it is the first option in community for Feynman integral evaluation. Only when

there does not exist UT integral, we will try other methods to evaluate Feynman integrals. I believe

that this is the biggest development in QFT since 2010.

Suppose that the integral family depends on Mandelstam variables sij ’s and mass parameters

m2
i . Collectively, we call them xi’s. For the simplicity, we assume all of these xi’s have the same

unit [energy ]2.

Let I be a column vector of master integrals. The derivatives of the Feynman integrals in

Mandelstam variables and mass variables are again the integrals in this integral family. Therefore,

by IBP reduction, we have,

∂

∂xi
I = Ai(x,D)I . (1)

where D is the dimension of spacetime. Ai(x,D) is a square matrix whose entries are rational

functions in x and D.

The differential equation has the following integrability condition,

∂

∂xj
Ai −

∂

∂xi
Aj − [Aj , Ai] = 0 , (2)

otherwise there is no solution for the differential equation. Furthermore, the dimension analysis

provides the Euler relation,

∑
i

xiAi = diag{[I1]/2, . . . , [Ik]/2} (3)

where [Ij ] is the energy dimension of Ij . The conditions (2) and (3) are very useful for checking

the correctness of differential equations.

If we have a different integral basis,

Ĩ = TI (4)
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Then in the Ĩ basis, the differential equation reads,

∂

∂xi
Ĩ = ÃiĨ . (5)

where

Ãi = TAiT
−1 + ∂iTT

−1 (6)

Note that is not a homogeneous transformation. Ai is called the connection, just like the “connec-

tion” in differential geometry.

I. DERIVE THE DIFFERENTIAL EQUATION

The derivative of Feynman integrals in Mandelstam variables is not straightforward, since the

original Feynman integrals do not have the explicit dependence in Mandelstam variables. We need

to build differential operators in external momenta which effectively serve as the derivative in

Mandelstam variable.

Take the four-point massless kinematics as an example. We have p2
1 = p2

2 = p2
4 = 0, p1 ·p2 = s/2,

p1 · p4 = t/2 and p2 · p4 = −(s+ t)/2. We make an ansatz for the ∂/∂t operator,

Ot = (c11p
µ
1 + c12p

µ
2 + c14p

µ
4 )

∂

∂pµ1
+ (c21p

µ
1 + c22p

µ
2 + c24p

µ
4 )

∂

∂pµ2
+ (c41p

µ
1 + c42p

µ
2 + c44p

µ
4 )

∂

∂pµ4
(7)

We require that

Ot(p2
1) = Ot(p2

2) = Ot(p2
4) = 0, Ot(p1 · p2) = 0, Ot(p1 · p4) =

1

2
, Ot(p2 · p4) = −1

2
(8)

The solution for the c’s is not unique. However, the different construction are physically equivalent

since the integrals themselves are Lorentz invariant. One simple construction is that,

∂/∂t = Ot =

(
1

2t
pµ1 +

1

2(s+ t)
pµ2 +

s+ 2t

2t(s+ t)
pµ4

)
∂

∂pµ4
(9)

Note that there is only derivative in the fourth momentum. Similarly,

∂/∂s = Os =

(
1

2s
pµ1 +

2s+ t

2s(s+ t)
pµ2 +

1

2(s+ t)
pµ4

)
∂

∂pµ2
(10)

Then acting on propagators, we get the power increase of the propagator and also a new numerator

factor. Then we explicitly see that the derivatives are still in the original integral family.

Another way is to directly consider the non-vector form of the Feynman integrals. For example,

it is straightforward to get the derivatives in the Baikov representation [2].

∂xG[n1, . . . nk] = ∂x

(
U

E−D+1
2

∫
dz1 . . . dzk

P
D−L−E−1

2

zn1
1 . . . znk

k

)
(11)
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where x is a Mandelstam variable or an external mass square. The only term looks strange is

∂xP
D−L−E−1

2 (12)

for which the degree seems to be changed. However, we proved that in ref. [2] that,

∂xP =

( k∑
i=1

ak
∂

∂zi
P

)
+ bP (13)

for any Feynman diagram. This identity is a statement of ideal membership. After using this

relation and IBPs, we see that

∂x

(∫
dz1 . . . dzk

P
D−L−E−1

2

zn1
1 . . . znk

k

)
=

∫
dz1 . . . dzk

( k∑
i=1

ak
zn1

1 . . . znk
k

∂

∂zi
P

D−L−E−1
2

)
+ b

P
D−L−E−1

2

zn1
1 . . . znk

k

=

∫
dz1 . . . dzkP

D−L−E−1
2

(
b

zn1
1 . . . znk

k

−
k∑
i=1

∂

∂zi

ak
zn1

1 . . . znk
k

)
(14)

However, although this method does not have the differential operator construction step, it is in

general generating more complicated expressions. Currently, its usage is limited to some special

examples.

Notice that the derivatives in internal mass parameters are simple.

We consider the massless box example with

D1 = l2, D2 = (l − p1)2, D3 = (l − p1 − p2)2, D4 = (l + p4)2 . (15)

We select the master integrals

I = {G[1, 1, 1, 1], G[1, 0, 1, 0], G[0, 1, 0, 1]} (16)

It is clear that

∂tI1 =
G[0, 1, 1, 2]

2(s+ t)
+
sG[1, 0, 1, 2]

2t(s+ t)
+
G[1, 1, 0, 2]

2(s+ t)
− (s+ 2t)G[1, 1, 1, 1]

2t(s+ t)
− sG[1, 1, 1, 2]

2(s+ t)
(17)

=
−6s+Ds− 2t

2t(s+ t)
G[1, 1, 1, 1]− 2(D − 3)

st(s+ t)
G[1, 0, 1, 0] +

2(D − 3)

t2(s+ t)
G[0, 1, 0, 1] (18)

where in the second step we used the IBP reduction.

Finally we get the differential equation matrices,

As =


−−Dt+2s+6t

2s(s+t)
2(D−3)
s2(s+t)

−2(D−3)
st(s+t)

0 D−4
2s 0

0 0 0

 (19)
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and similarly,

At =


Ds−6s−2t

2t(s+t) −2(D−3)
st(s+t)

2(D−3)
t2(s+t)

0 0 0

0 0 D−4
2t

 (20)

It is easily to check the integrability condition

∂tAs − ∂sAt − [At, As] = 0 (21)

and the Euler condition,

sAs + tAt =


D−8

2 0 0

0 D−4
2 0

0 0 D−4
2

 (22)

We have the following observations:

• The differential equation has poles in s, t and s + t. However, we know that the bubble

diagrams depend on s and t respectively. The box function would have singularities if s→ 0

or t → 0, but should not have singularity if s + t → 0. In future we see that the apparent

s+ t pole would not get into the solutions (Feynman integrals).

• There are double poles. Usually double pole in a differential equation is a bad sign, which

means the solution would have intrinsic singular points. A Feynman integral should not have

intrinsic singular point in kinematics points. However, after a basis change this double pole

is gone.

II. DIFFERENTIAL EQUATIONS FOR UT FEYNMAN INTEGRALS

From ref. [1], for a large class of Feynman integral families, we can define the uniformly tran-

scendental (UT) integrals and the corresponding differential equation is extremely simply simple.

Often, we can solve these UT differential equations analytically.

A list of integrals, Ii’s, in one integral family, is called UT or of uniform transcendental weights,

if and only if, the integrals have the following expansion in ε:

Ii = ε−m
∞∑
j=0

I
(j)
i εj (23)
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where m is a fixed integer and I
(j)
i is a pure function of the transcendental weight j. Here we

describe the meaning of transcendental weight.

We define the transcendental weight for the following quantities as,

T (rational number) = 0, T (π) = 1, T (ζn) = n (24)

T (rational function) = 0, T (log(. . .)) = 1, T (Lin(. . .)) = n (25)

where Lin(. . .) is the order n polylogarithm function.

Lin(z) =
∞∑
k=1

zk

kn
, Li1(z) = − log(1− z) (26)

Furthermore, we define the transcendental weight of a product as,

T (f1f2) = T (f1) + T (f2) . (27)

I
(j)
i is a function of the transcendental weight j, if for all terms of I

(j)
i , the transcendental weight

is j, T (I
(j)
i ) = j. Furthermore I

(j)
i is pure if and only if

T (∂xI
(j)
i ) = j − 1, (28)

for any kinematic variable.

If Ii is UT and also an integral basis, then its differential equation is very simple [1],

∂

∂xi
I = εAi(x)I (29)

where Ai(x) is rational and independent of ε. This kind of DE is called the canonical DE. The

integrability condition is simplified as,

∂jAi = ∂iAj , [Ai, Aj ] = 0 (30)

Immediately, we see that the differential matrices are all integrated to the same matrix A:

Ai = ∂iA . (31)

Note that A may not be extended to a global single-valued matrice but locally it is well-defined.

We further simplify (30) as,

dI = ε(dA)I (32)

here d stands for the total derivative. If we consider a path γ(z) which maps [0, 1] to the parameter

space, then along the path

d

dz
I = ε

dA

dz
I (33)
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Now consider I along the path γ, namely I(z). Suppose that the boundary at the boundary

z = 0, I(0) is known to certain orders,

Ii(0) = ε−k
∑
j=0

B
(j)
i εj (34)

where B
(j)
i are constants. Then the canonical DE is solved immediately by the path-ordered

exponential expansion, just like the perturbation series in QFT,

I(z) = P exp

(
ε

∫ z

0
ω(u)du

)
I(0) . (35)

where ω(u) = dA/dz|z=u. That means order by order,

I(0)(z) = B(0) (36)

I(1)(z) = B(1) +

∫ z

0
du ω(u)B(0) (37)

I(2)(z) = B(2) +

∫ z

0
du ω(u)B(1) +

∫ z

0
du1

∫ u2

0
du2 ω(u1)ω(u2)B(0) (38)

I(3)(z) = B(3) +

∫ z

0
du ω(u)B(2) +

∫ z

0
du1

∫ u1

0
du2 ω(u1)ω(u2)B(1)

+

∫ z

0
du1

∫ u1

0
du2

∫ u2

0
du3 ω(u1)ω(u2)ω(u3)B(0) (39)

. . . (40)

So each order is explicitly an iterative integral. From the definition of transcendental weights, we

see that if the DE is canonical and the boundary is UT, then the integral basis is UT. However,

if only the DE is canonical we conclude that very likely the integral basis is UT but there can be

counter-examples.

Does the result depend on the choice of γ? The integrability condition implies that the iter-

ative integral is homotopically invariant. However a non-homotopic choice will provides different

integration result. That means the Feynman integrals are multi-valued functions but holomorphic

on each branch.

In general the total derivative matrix dA has the symbol letter decomposition.

dA =

N∑
k=1

ck
dWk

Wk
(41)

where ck is a constant square matrix and Wk is a function of kinematic variables.

Then we see that on the curve,

ω(z) =
dA

dz
=

N∑
k=1

ck
dWk

dz

1

Wk
=

N∑
k=1

ck
d logWk

dz
(42)

So we are working with the iterative integrals with dlog forms.
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A. Example: massless one-loop box

We compute the massless one-loop box explicitly by UT integrals.

First, to simplify the problem, we remove the dimension by,

x = s/t (43)

And set the UT integrals as

I1 = ε2eεΓE (−s)εstG[1, 1, 1, 1] (44)

I2 = εeεΓE (−s)εsG[1, 0, 2, 0] (45)

I3 = εeεΓE (−s)εtG[1, 0, 2, 0] (46)

The factor sε is set to make all these UT integrals dimensionless.

Then the differential equation in x reads

∂xI = ε


− 1
x(x+1)

2
x+1 −

2
x(x+1)

0 0 0

0 0 − 1
x

 I =

(
−1 0 −2

0 0 0

0 0 −1

 1

x
+


1 2 2

0 0 0

0 0 0

 1

x+ 1

)
I (47)

We call the residue matrix at 0 as A0 and the residue matrix at 1 as A−1.

From direct computation in Feynman representation, we see that

I2 =
πeγεε2 csc(πε)Γ(−ε)

Γ(1− 2ε)
(48)

and I3 = xεI2.

We choose the boundary point at x = 1. At this point, these is no singularity. This is a

symmetric point for I2 and I3. The boundary values are,

I|z=1 =


b0

−1

−1

+


b1

0

0

 ε+


b2

π2

12

π2

12

 ε2 +


b3

7ζ(3)
3

7ζ(3)
3

 ε3 +


b4

47π4

1440

47π4

1440 ε
4

 (49)

All these bi’s are unknown which are to be fixed.

Using the iterative integral, first, we find,

I(1) = B(1) +

∫ x

1
dz(

A0

z
+

A1

1 + z
)I(0) (50)

It seems that we will get log(x+1) after the integration. However, this term violates that condition

that the box integral should not have singularity at x = −1. That means

A−1I
(0) = 0, b0 = 4 (51)
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So after integration we have

I(1) =


b1 − 2 log(x)

0

log(x)

 (52)

Repeat this,

I(2) = B(2) +

∫ x

1
dz(

A0

z
+

A1

1 + z
)I(1) (53)

Again we need A1I
(1)|z→−1 vanishes. So b1 = 0. After the integration

I(2) =


b2

π2

12

π2

12 −
1
2 log2(x)

 (54)

Then

I(3) = B(3) +

∫ x

1
dz(

A0

z
+

A1

1 + z
)I(2) (55)

From the singularity analysis at −1, we determine that b2 = −4π2/3. After the integration,

I(3) =


b3 + log3(x)

3 − log(x+ 1) log2(x)− 2Li2(−x) log(x) + 7
6π

2 log(x) + π2 log
(

2
x+1

)
+ 2Li3(−x) + 3ζ(3)

2

7ζ(3)
3

1
12

(
2 log3(x)− π2 log(x) + 28ζ(3)

)


(56)

Then in the next integration we find that b3 = −77ζ(3)/6. Thus,

I(3) =


log3(x)

3 − log(x+ 1) log2(x)− 2Li2(−x) log(x) + 7
6π

2 log(x) + π2 log
(

2
x+1

)
+ 2Li3(−x)− 34ζ(3)

3

7ζ(3)
3

1
12

(
2 log3(x)− π2 log(x) + 28ζ(3)

)


(57)

Note that this function is finite at x = −1. In this way, all order in the ε is found analytically.
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